Multiscale Information Science

Information Science Group

Mihai Anitescu

- Stochastic optimization
- Possible applications requiring "multiscale mathematics"
 - Seraching for detail in large data base of images
 - Geographical database search
 - Fast Queries for very large scale parametric partial differential equations.
 - Simulation of granular materials
 - General optimization-based simulation

George Biros

- Numerical methods for PDE's and optimization
- Applications
 - Geosciences....
 - Biomedical Flows
 - CFD
 - Fast Multipole methods
 - Molecular dynamics (femtoseconds to microseconds)
 - (lots of pictures)

Bruce Hendrickson

- Text and images represent huge repository of scientific information; information science is an essential scientific tool.
- Visualization of abstract relationships
 - Multiscale
 - (clustering of scientific papers)
- Dimensionality reduction in general
 - E.g. Google's page rank (link analysis via eigenvectors)
 - Latent Semantic analysis
- Finding Multiscale Structure
 - Dewy Decimal System
 - Clustering scientific data
 - Vivismo search engine does clustering

Terence Critchlow

- Approximate queries using multi-resolution data
- Data integration in bioinformatics
 - From DNA level to symptoms and treatments
- What is multiscale information science?
 - Multiresolution data structures
 - Imposed hierarchies (clusters)
 - Visualization of high-dimensional data sets

Pieter Swart

- Experiments are critical!
- Multiscale challenges in the discrete world
- Finding the needle in the haystack
 - Hyperspectral imagery
 - Exploitation of nonlinearity and multiresolution
 - Face recognition test problem (has measure of success!)
- Multiscale dynamics on complex networks (no current public tools!)
 - Biology: many applications
 - Social, sensor, extermal networks
- Dynamics of the internet (worm dynamics, normal use dynamics)

Lori Freitag

- Unstructured adaptive mesh refinement
- Data reduction for Interactive 3-d visualization
- PDE's
- Uncertainty quantification for data
- Tom Larson
 - "Selective physics"
 - Multiscale numerical methods integrated into decision support systems
- Pak Wong
 - Wavelet approximations, volume rendering
 - Dynamic visualization of transient data streams
 - Data mining, knowledge discovery
 - Network routing
- Rusty Lusk
 - Multiscale parallel program performance visualization

Jim Thomas

- Data intensive applications
- Combine human and computer sides of analytics
- Visual analytics (suite of tools from PNNL)
- Mathematical data signatures
- Predictive analytics
- Dynamic structure for unanticipated data

David Brown

- Extraction of information from multimodal sources
 - Analogous to multiphysics simulations

Mathematics Themes for Multiscale Information Science

- Multiresolution analysis to find fast algorithms applicable to information beyond time series, images; example: dynamic networks
 - Wavelets, for example
 - Optimal clustering to preserve and discover information
 - Dimensionality reduction
 - Visualization in support of human understanding and communication
 - Not just classic simulation data
 - Full text landscape analysis for protein networks
- Data modeling
 - E.g. data representation of multi-modal form across scales
- Statistics
 - Identify sampling techniques that have higher-order convergence
 - E.g., randomized quasi Monte Carlo
 - Uncertainty quantification, example: non-PDE models
 - General issues in sampling: e.g., graph sampling
- General Needs
 - Support for large multidisciplinary scientific teams
 - Community Tools to encapsulate multiscale mathematics for applications
 - Data generation for algorithmic development and validation

